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24b tons of CO2 were annually produced on the Earth as 

a result of human activity but CO2 consume was limited

CO2

Carbon cycle: a positive CO2 accumulation 
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CO2 concentration has increased rapidly from 

1744 to 2005 and led to the climate change.
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CO2 accumulation and climate change
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CO2 point sources in China

60% of CO2 emissions resulted from coal-fired plants. The
CO2 capture from large-volume and highly-concentrated CO2

stationary source is technically feasible and cost-effective for
sequestrating CO2.
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CO2 emission and disribution



ICC • CAS

Government and industries have recently paid much attention to 
CO2 problem in China. MOST and NSFC initiate R&D program 
of abatement and CCSU .
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Present status of CO2 capture

These current technologies, when applied for CO2 capture 

from  coal-fired power plants,  increase the electricity cost 

by more than 70%. 

Absorption in aqueous amines
MEA、DEA、MDEA、DIPA、DGA etc.

Membrane processing
Polymer or inorganic oxide membranes.

Solid sorbents
activated carbon, amine-treated polymers, 

nanosized oxides.

CO2 capture 

at present
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The cost can be reduced if an effective CO2 capture sorbent 

is developed which has 

 a high CO2 adsorption capacity (>8% wt), 

 a long-term regeneration capacity in a power plant flue 

gas environment( high-temperature, contaminants )

 a low energy requirement for regeneration compared to 

the large amount of energy required for the aqueous 

amine process.

ICC focus on high-temperature CO2 capture materials
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Solution to cost reduction



Materials for CO2 capture at ICC 

0 2 4 6 8 10 12 14 16 18 20
0.0

0.5

1.0

1.5

P
o
re

 v
o
lu

m
e
/c

m3
g

-1

Pore size/nm

sample 3

sample 2

sample 1

2 4 6 8 10

In
te

n
s
it
y
/a

.u
.

2q

sample0

sample1

sample2

sample3

sample4

The focus  is  on  the development of 
absorbents with the capture capacity 
over 10wt%.
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Solid soution of mesoporous with high stability showed 

both weak and strong of high basicity

ICC • CAS
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The material showed a fast uptake in 15min and then a high

capacity of >10wt% at 100oC, and CO2 TPD repeated well

for sample 3 below 400oC, indicating a perfect reusability.
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Technology development for CO2 capture 

ICC • CAS CO2 Capture and Utilization

High adsorption capacity: >10 wt%

Low desorption temperature:<400℃

Pssibility of long-term regeneration

in-situ application for flue gas at the 

adsorption temperature of 200℃

Technology development for CO2

capture 
High adsorption capacity: >10

wt%

Low desorption

temperature:<450℃

Pssibility of long-term

regeneration
in-situ application for flue gas at 

the adsorption temperature of 

200℃

烟囱

除尘器

CO2



CO2 chemical utilization at ICC
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Sensitivity Analysis

 90% syngas yield with CH4 to 

CO2 molar ratio at 1:1 is assumed 

without dilution

 The noble catalyst charged for 

CDR is assumed to have price of 

$1,000/kg

 Data by home-made EXCEL

 Rh  is  the  most active metal, and has been  well accepted for CPOX;

 The barriers is to improve Ni catalyst activity and stability,  especially 

to  reduce carbon deposition. 
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CO2 reforming of methane 



Mesoporous Nanocomposites

 Nano-particles  with  zero dimension take 

for no “steps” and “kinks”

 Carbon deposition occured only when the

metal cluster is greater than a critical size

Metals could  be  confined  by meso-pores  

and hardly grow up

 Carbon deposition  was  favored  by acidic 

supports, solid base could activate  CO2  

and promote coke consumption.

Meso-ZrO2

Active component

Ni, CaO

Meso-ZrO2

Active component

Ni, CaO

Meso-ZrO2

Active component

Ni, CaO
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CO2 reforming of methane 



Highly Stable Ni-CaO-ZrO2 Nanocomposites
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CO2 reforming of methane 



CO2 cycloaddition to propylene or ethylene carbonate
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500t/a Pilot Plant

Both PO/EO conversion and PC/EC

selectivity over heterogeneous catalysts

approached to 100% at mild conditions.

By a continual structural reactor, heat was

successful ly removed and then no

deactivation was observed in 1000h

o p e r a t i o n i n 5 0 0 t / a P i l o t P l a n t .
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Problems:_
 How to  shift  the  equilibrium 
 How to remove produced H2O

Strategies:_
 Reaction take place in sc-CO2

 CH3CN as a coupling solvent 
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Cyclic carbonates from glycols in sc-CO2



Cyclic carbonates from glycols in sc-CO2

The by-product was  mainly  propylene glycol-2-acetate due to 

the hydrolysis of CH3CN  into  acetamide and  then acetic acid 

and ammonia (along with a small amount of dipropyleneglycol 

as expectable by-products). 
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Fe halides appeared to be active towards  the reaction of 

PG with sc-CO2 but crystal water had the negative effect. 

Catalyst
PG conversion

%

Selectivity  %

PC PG-2-acetate DPG

FeCl3 42.5 62.3 36.5 1.2

FeCl3·6H2O 35.8 60.2 38.8 1.0

FeCl2 38.9 60.4 38.2 1.4

FeCl2·4H2O 30.6 58.5 40.0 1.5

CuCl2 15.6 57.7 41.5 0.8

ZnCl2 39.2 45.6 37.4 17.0

CoCl2 17.6 55.7 43.2 1.1

NiCl2 14.5 56.6 42.4 1.0
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Cyclic carbonates from glycols in sc-CO2
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CO2 pressure and temperature effect

PG conversion and PG yield were highly improved by sc-CO2

and the optimal pressure was 10MPa in present work.
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Cyclic carbonates from glycols in sc-CO2
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The effect of CH3CN on the reaction

CH3CN was very important for the synthesis.  CO2 could be 

easily dissolved in CH3CN, and the hydration of CH3CN led 

to the removal of H2O with the optimal mount.

Regent PG Conv.

%

PC Yield

%

CaCl2 0 0

MgSO4 0 0

4A zeolite 0 0
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Cyclic carbonates from glycols in sc-CO2



Synthesis of DMC from urea and methanol

Urea Methyl Carbamate(MC) DMC

H2N-C(O)-NH2

NH3

-NH3 -NH3

+CH3OH

-H2O

CO2 +

H2N-C(O)-OCH3 H3CO-C(O)-OCH3
+CH3OH

High DMC yield can be achieved with effective product removal 
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The mechanism on solid catalysts

NH2C（O）NH2 M-N=C=O

CH3OH

CAT.

M-N-C（O）-OCH3

CH3O

CH3O

CH3O-C（O）-OCH3

Catalyst

CATALYST:  M1Xn/ M2M3Ox

M1= Ni, Co, Zn, Sn, Pb etc

M2= Zr, Al, La, etc

M3= Mg, Ca, Ba etc

X = Ac, I, NO3
2- etc
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Synthesis of DMC from urea and methanol
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The price is about $600/ton on the base of 5000 ton /year demo, 

which is almost the half price by other technologies. 
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Synthesis of DMC from urea and methanol



DMC
Coal to 

Methanol

DMC Synthesis 

& Purification

Coal

Urea 

Synthesis

Methanol

Liquid 

Ammonia

1,015 tpd

CO2

3,983 tpd

2,945 tpd

1,948 tpd

1,313 tpd

2,698 tpd

Urea

1,827 tpd

Balance of 

Plant

Purge Gas

2,670 tpd

To Vent

4,764 tpd

7,709 tpd

Net 

Power 

Export

128.18 MW
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Coal Chemical process without CO2 emission
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entry diols alkylene carbonate Yield (%)

1 1,2-ethanediol 1,2-ethylene carbonate 95.1

2 1,2-propanediol 1,2-propylene carbonate 99.6

3 1,2-butanediol 1,2-butylene carbonate 99.4

4 2,3-butanediol 2,3-butylene carbonate 92.4

5 1,2-cyclohexanediol 1,2-cyclohexylene carbonate 90.5

6 1,3-propanediol 1,3-propylene carbonate 73.

7 1,3-butanediol 1,3-butylene carbonate 74.3

Cyclic carbonate from urea and diol
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Summary

ICC has developed the solid absorbents and CFB

process for in-situ application for flue gas, and led to

low cost for CO2 capture.

ICC has developed some processes for CO2 chemical

utilization.
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